

Lösung der Gleichung $x^2 = 2$

1. Grafisch:
$$\mathbf{x} = \frac{2}{x}$$

Arbeitsschritte	Tastenfolge	Display
Eingabe der Funktionsgleichungen	$Y=$ Y_1 eingebenENTER oder \checkmark Y_2 eingeben	Plot1 Plot2 Plot3 NY18X NY282/X NY3=
Bearbeitung des Window-Menüs	(WINDOW)	FENSTER Xmin=-1 Xmax=7 Xscl=.2 Ymin=-1 Ymax=5 Yscl=.2 Xres=1
	ZOOM 5: ZQuadr ENTER	2000 SPEICHER 1:ZBox 2:Ver9rößern 3:Verkleinern 4:ZDezimal 28ZQuadr 6:ZStandard 7↓ZTri9
	Durch ZQuadr wird der Disp Achse einheitlich skaliert sin Winkelhalbierende des I. und wird.	lay so eingestellt, dass x- und y- d, so dass der Graf von y = x als l III. Quadranten deutlich sichtbar
Aufruf des Grafikbildschirms	(GRAPH)	
Bestimmung des Schnittpunktes	2nd)[TRACE] [5]: Schnittpkt	BENERT 1:Wert 2:Nullstelle 3:Minimum 4:Maximum ESchnittekt 6:d9/dx 7:Jf(x)dx

2. Intervallschachtelung für $x^2 = 2$

Arbeitsschritte	Tastenfolge	Display
Eingabe der Funktionsgleichung	$ \begin{array}{c} \hline Y = \\ Y_1 \text{ eingeben} \\ \hline ENTER \end{array} $	Plot1 Plot2 Plot3 \Y1⊟X² \Y2=■
Einstellungen für die Wertetabelle	2nd WINDOW TableStart bei $x = 1$ Schrittweite: 0.1	TBL EINST TblStart=1 Tbl=.1 unabh9: Fra9 abh9: Auto Fra9
Darstellung der Wertetabelle	 2nd GRAPH Mit Scrollen und Werte für X und Y₁ vergleichen. Es lässt sich ablesen: Y = 1,96 für X = 1,4 	X Y1 1 1 1.1 1.21 1.2 1.44 1.3 1.69 1.4 1.96 2.25 1.6 X=1.5 X

	Y = 2,25 für X = 1,5	
	Folgerung: Das gesuchte X liegt zwischen 1,4 und 1,5.	
Einstellungen für die Wertetabelle	[2nd] [WINDOW] TableStart bei $x = 1,4$ Schrittweite: 0.01	TBL EINST TblStart=1.4 △Tbl=.01 unabh9: Fra9 abh9: Auto Fra9
Darstellung der Wertetabelle	 2nd]GRAPH Mit → scrollen und Werte für X und Y₁ vergleichen. Es lässt sich ablesen: Y = 1,9881 für X = 1,41 Y = 2,0164 für X = 1,42 Folgerung: Das gesuchte X liegt zwischen 1,41 und 1,42. 	X Y1 1.4 1.4 1.96 1.41 1.9881 2.0164 1.43 2.0164 1.43 2.0164 1.43 2.0164 1.43 2.0164 1.43 2.0164 1.43 2.0164 1.43 2.0164 1.43 2.0164 1.44 2.0155 1.45 2.1025 1.46 2.1316 X=1.42
Einstellungen für die Wertetabelle	2nd WINDOW TableStart bei $x = 1,41$ Schrittweite: 0.001	TBL EINST TblStart=1.41 STbl=.001 Unabh9: Fra9 abh9: Auto Fra9
Darstellung der Wertetabelle	[2nd]GRAPHMit → scrollen und Werte für X und Y1 vergleichen.Es lässt sich ablesen: Y = 1,9994 für X = 1,414 Y = 2,0022 für X = 1,415Folgerung: Das gesuchte X liegt zwischen 1,414 und 1,415.	X Y1 1.41 1.9881 1.411 1.9909 1.412 1.9937 1.413 1.9966 1.414 1.9994 2.0022 1.416 2.0051 X=1.415
	Das Verfahren kann beliebig og gewünschte Genauigkeit für x	ft wiederholt werden, bis die erreicht wird.

3. Heronsches Verfahren für $x^2 = 2$

Das Heronsche Verfahren wird gewöhnlich in der Form $x_{n+1} = (x_n + \frac{a}{x_n})$:2 angegeben. Da es sich um eine rekursive Folge handelt, ist natürlich auch folgende Darstellung möglich: $x_n = (x_{n-1} + \frac{a}{x_{n-1}})$:2.

Arbeitsschritte	Tastenfolge	Display
Umstellung von Funktion auf Folge	MODE • • • • • • • • • • • • • • • • • • •	Normal Exp Tech Flk 0123456789 Bogenmaß Grad Par Pol Folg Verbunder Punkt Einzeln Parallel Reell a+bi re^0i Ganz Horiz G-T
Eingabe der Folge	Y= Startwert: u(1) = 1,4 u wird erreicht über 2nd 7	Moti Moti Moti Moti nMin=1 $u(n) \equiv (u(n-1)+2/u(n-1))/2$ $u(nMin) \equiv (1.4)$ u(n) = ≡ u(nMin) = 1 u(nMin) = 1 u(n) = 1
	Hinweis: (1) Insgesamt lassen sich dre (2) Eine rekursive Folge mus damit sie im Y-Editor eingeg	i Folgen (u, v, w) definieren. ss immer die Form $x(n) =$ haben, geben werden kann.
Einstellungen für die Wertetabelle	2nd WINDOW Start bei $n = 1$, wobei $n \in \mathbb{N}$	TBL EINST TblStart=1 STbl=1 unabh9: Fra9 abh9: Auto Fra9
Aufruf der Wertetabelle	(2nd)(GRAPH)	$\begin{array}{c c} n & u(n) \\ \hline 1.4 \\ 2 & 1.4143 \\ 3 & 1.4142 \\ 4 & 1.4142 \\ 5 & 1.4142 \\ 5 & 1.4142 \\ 6 & 1.4142 \\ 7 & 1.4142 \\ \hline n=1 \end{array}$
Ermittlung der Näherung	Mit \triangleright zur Spalte u(n) wechseln und mit \bigtriangledown nach unten scrollen. Beim Vergleich fällt auf, dass u(4) = u (5), d.h. nach 4 Schritten erhalten wir bereits eine sehr gute Näherung für x als Lösung der Gleichung x ² = 2.	$ \begin{array}{c cccc} n & u(n) \\ \hline 1 & 1.4 \\ 2 & 1.4143 \\ 3 & 1.4142 \\ \hline 5 & 1.4142 \\ \hline 5 & 1.4142 \\ \hline 7 & 1.4142 \\ \hline u(n)=1.414213562 \end{array} $
Grafische Veranschaulichung der Folge	WINDOW Werte für die Darstellung einstellen	FENSTER nMin=1 nMax=10 PlotStart=1 PlotSchr=1 Xmin=0 Xmax=10

		Xscl=1 Ymin=0 Ymax=2 Vscl= 5
	(GRAPH)	
Erkenntnisgewinnung mit Hilfe des Grafen	 (TRACE) Mit ◀ und ▶ werden einzelne Punkte des Grafen ausgewählt und deren Koordinaten angezeigt. 	u=(u(m-1)+2/u(m-1))/2
	Es fällt auf, dass der Graf ziemlich rasch ($n = 3$) in eine vertikale Gerade mit der Gleichung y = 1,4142136 übergeht.)))=4 X=4 <u></u> Y=1.4142136 J

Alternatives Vorgehen

Arbeitsschritte	Tastenfolge	Display
Einstellung der Rechengenauigkeit	MODE Es werden 9 Stellen nach dem Komma angezeigt. 2nd MODE Zurück zum Haunthildschirm	Normal Exp Tech Flk 012345678 Bogenmaß Grad Fkt Par Pol Folg Verbunden Punkt Einzeln Parallel Reell a+bi re^0i Ganz Horiz G-T
Festlegung des Startwertes	$1 \cdot 4 \text{STO}(X, T, \Theta, n) \text{ENTER}$	1.4→X 1.4
Berechnung der Näherungswerte	$(X,T,\Theta,n+2;X,T,\Theta,n)$ $(X,T,\Theta,n+2;X,T,\Theta,n)$ (X,T,Θ,n) Durch wiederholtes Drücken der ENTER-Taste werden die Näherungswerte berechnet. Bereits beim 4. Schritt stimmen die Werte bis zur 9. Stelle nach dem Komma überein.	(X+2/X)/2+X 1.414285714 1.414213564 1.414213562 1.414213562